MOVING-AVERAGE TRANSFORMATIONS IN CLASSICAL LINEAR MODELS
نویسندگان
چکیده
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملStationarity of Generalized Autoregressive Moving Average Models
Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are believed to be stationary. Although stationarity of the underlying process is typically crucial to ensure desirable properties or even validity of statistical estimators, there are numerous time series models for which this stationarity is not yet proven. A major barrier...
متن کاملImproved Inference for Moving Average Disturbances in Nonlinear Regression Models
This paper proposes an improved likelihood-based method to test for first-order moving average in the disturbances of nonlinear regression models. The proposed method has a third-order distributional accuracy which makes it particularly attractive for inference in small sample sizes models. Compared to commonly used first-order methods such as likelihood ratio and Wald tests which rely on large...
متن کاملClassical Testing in Functional Linear Models.
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functiona...
متن کاملMoving Average Processes with Infinite Variance
The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metroeconomica
سال: 1973
ISSN: 0026-1386,1467-999X
DOI: 10.1111/j.1467-999x.1973.tb00219.x